Trends in Invasive Candida Infections in Swiss Hospitals: A 15-Year Surveillance Study (2009-2023) on Species Distribution, Antifungal Resistance, and Usage Patterns

Friedli O¹ (olivier.friedli@unibe.ch), Plüss-Suard C¹, Kronenberg A¹

¹Swiss Centre for Antibiotic Resistance (ANRESIS), Institute for Infectious Diseases, University of Bern, Bern, Switzerland

Background

Invasive fungal infections, particularly candidemia, represent an escalating threat to global public health, causing significant morbidity and mortality, especially among immunocompromised patients¹⁻³. In Switzerland, systematic nationwide surveillance of antifungal resistance remains limited⁴, potentially leading to critical knowledge gaps in clinical practice⁵. Additionally, the stagnation observed in antifungal drug development further exacerbates this situation, highlighting the need for systematic antifungal stewardship and enhanced surveillance in acute care hospitals³⁻⁵.

Objectives

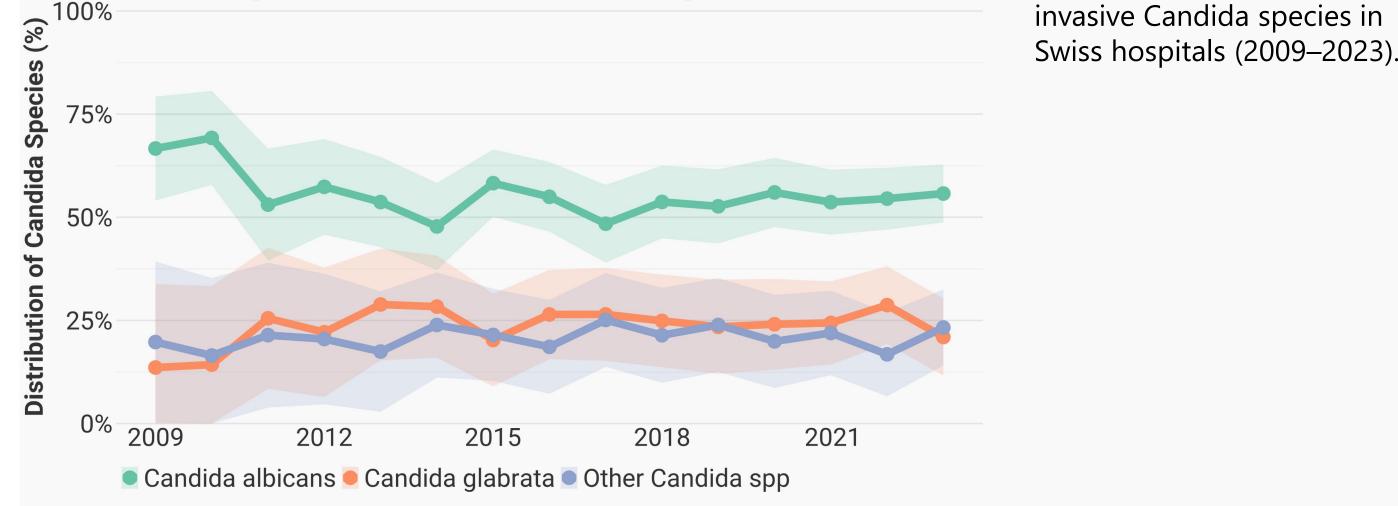
Methods

- Characterize the epidemiological trends of invasive Candida infections in Switzerland over a 15-year period (2009–2023).
- Assess species distribution, antifungal resistance patterns, specifically in *Candida albicans*, *Candida glabrata*, and other *Candida spp*.
- Evaluate antifungal consumption trends across various acute care hospital settings.
- Data Sources: Blood culture isolates and systemic antifungal use data (2009–2023) were collected from acute care hospitals in the ANRESIS network. Resistance data were based on reported isolates; antifungal consumption was measured in defined daily doses (DDD) per 100 bed-days.

P2800

• Statistical Analysis: Generalized Additive Models (GAM) applied to assess resistance trends and antifungal consumption patterns over time.

Results

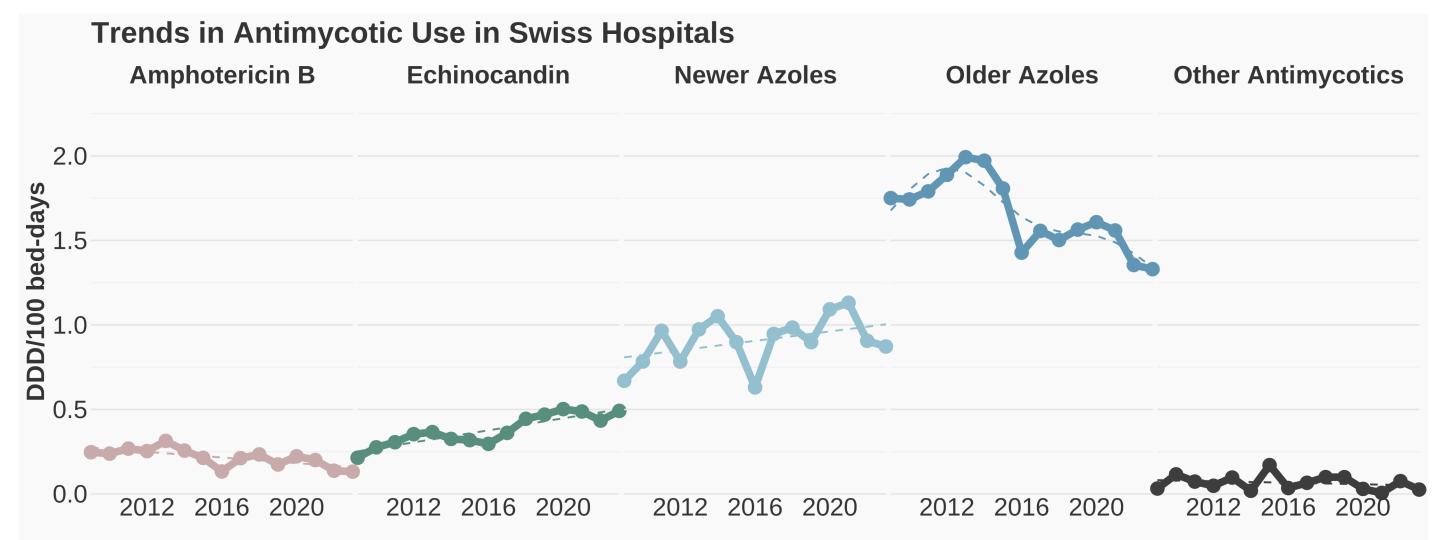

Species Distribution: Initial Shift Followed by Stable Species Levels

- *Candida albicans* consistently predominant (50–65%) throughout the 15-year period.
- Initial increase in *Candida glabrata* and other non-albicans species was observed, with their proportion stabilizing at approximately 45% of isolates from 2014 onward.

Figure 1: Distribution of invasive Candida species in

Consumption: Shift in Antifungal Consumption Patterns

- Echinocandins: Marked increase in use in recent years, likely due to their favorable safety profile with fewer reported adverse events.
- Newer azoles: Steady increase in use observed throughout the study period.
- Older azoles: Use declined after 2012, yet they remained the most widely used antifungal class overall.



Candida Species Distribution in Swiss Hospitals

Resistance: Increasing Echinocandin, Stable Azole Resistance Resistance profiles were analyzed using agents with the most reliable breakpoints.

- Polyenes (Amphotericin B): Resistance remains consistently low across species.
- Echinocandins (Anidulafungin): Resistance shows an increase in *C. albicans*, remains highest in non-albicans species, and is stable in *C. glabrata*.
- Azoles (Fluconazole): Resistance is high in non-albicans species and remains low and stable in *C. albicans*.

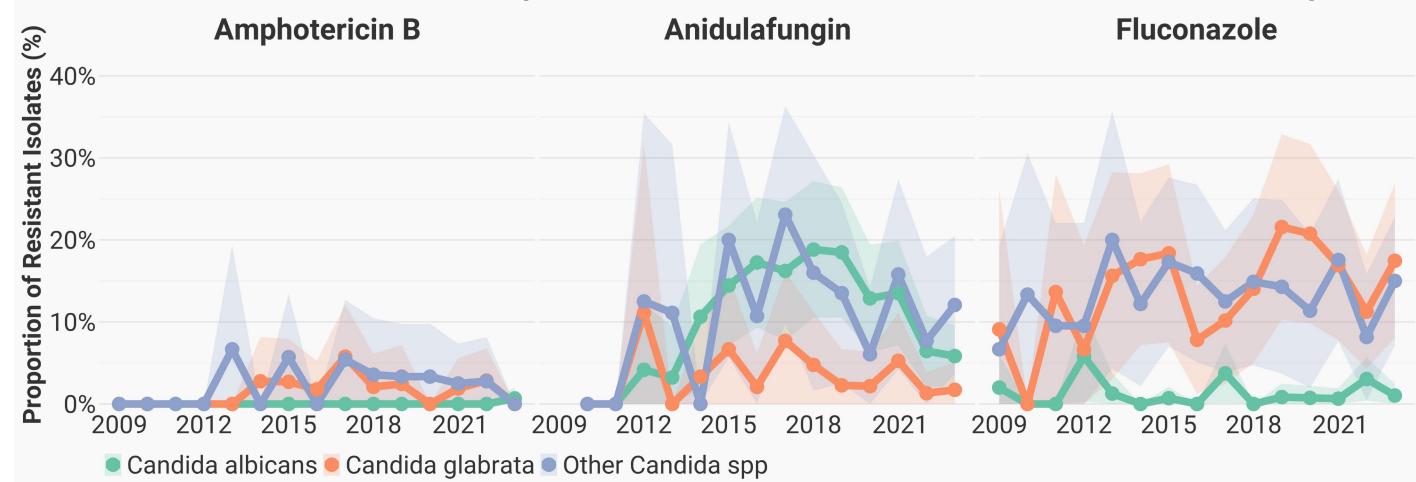

• Amphotericin B: Gradual decrease in use over the observed period.

Figure 3: Annual antifungal use in Swiss inpatient settings (2009–2023), by drug class: Amphotericin B, older azoles (Fluconazole, Itraconazole), newer azoles (Voriconazole, Isavuconazole, Posaconazole), echinocandins (Caspofungin, Micafungin, Anidulafungin), and other antimycotics. Expressed in DDD per 100 bed-days.

Conclusion

- Recent species distribution appears stable; however, the earlier shift toward non-albicans Candida and increasing resistance to key antifungal agents remain concerning.
- While echinocandins show fewer adverse effects, their growing use—along with newer azoles—may be driving emerging resistance, highlighting the need for appropriate antifungal use.

Resistance Trends in Candida Species for Antibiotics with Well-Established EUCAST Breakpoints

Figure 2: Resistance trends in invasive *Candida* isolates from Swiss hospitals (2009–2023). Shows resistance to fluconazole, amphotericin B, and anidulafungin in *C. albicans*, *C. glabrata*, and other species.

 These findings highlight the importance of national antifungal surveillance and enhanced stewardship programmes to reduce resistance and improve patient outcomes.

References

¹ Denning DW et al. Lancet Infect Dis, 2024. (PMID: 38224705)² Casalini G et al. Lancet Microbe, 2024. (PMID: 38608682)
³ Fisher MC et al. Nat Rev Microbiol, 2022. (PMID: 35352028)
⁴ Adam KM et al. Open Forum Infect Dis, 2021. (PMID: 34660836)⁵ EUCAST Antifungal Breakpoints, v11.0, 2024. (www.eucast.org)

