Proposal of a national definition of multidrug-resistant invasive gram-negative organisms by ANRESIS

Olivier Friedli¹, Peter Keller¹, Jacques Schrenzel², Andreas Kronenberg¹ ¹Institute for Infectious Diseases (IFID), University of Bern, Bern, Switzerland ²Bacteriology Laboratory and Genomic Research Laboratory, Geneva University Hospitals, Switzerland

Background

- Surveillance of multidrug-resistant (MDR) microorganisms is key to national antimicrobial resistance programs
- Gram-negative MDR microorgansims (GN-MDRO) in particular MDR Enterobacterales (MDR-E) are increasing worldwide.
- In Switzerland, there is no generally accepted definition of GN-MDRO, neither for epidemiological surveillance

Objectives

- Development of two MDR-E definitions for Switzerland, one for epidemiological use and one for infection control purposes.
- International definitions are taken as a basis and adapted to the local test algorithms as well as to the resistance situation prevailing in Switzerland.

nor for the purpose of infection prevention control (IPC).

Method

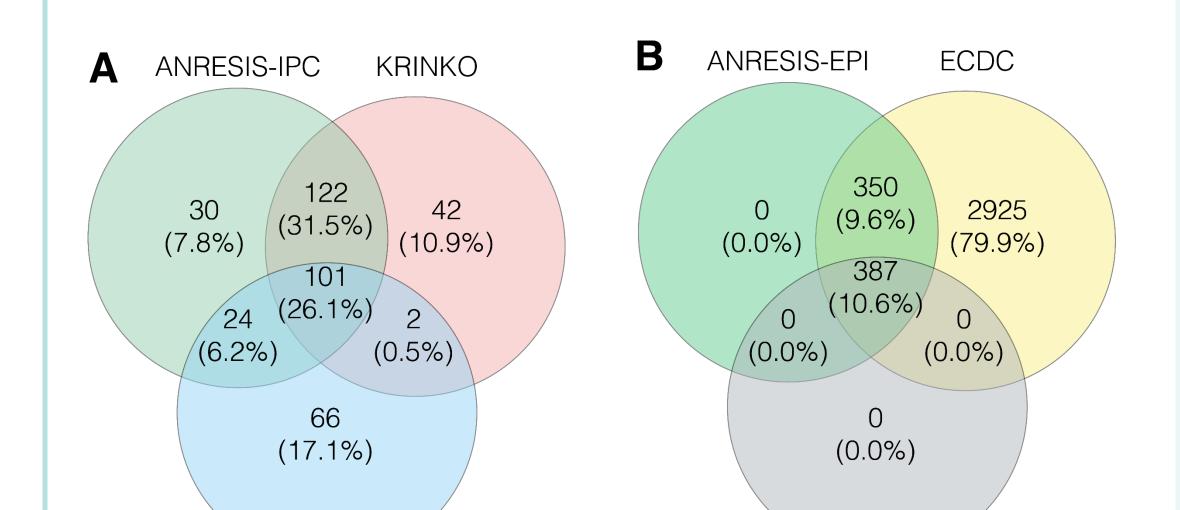
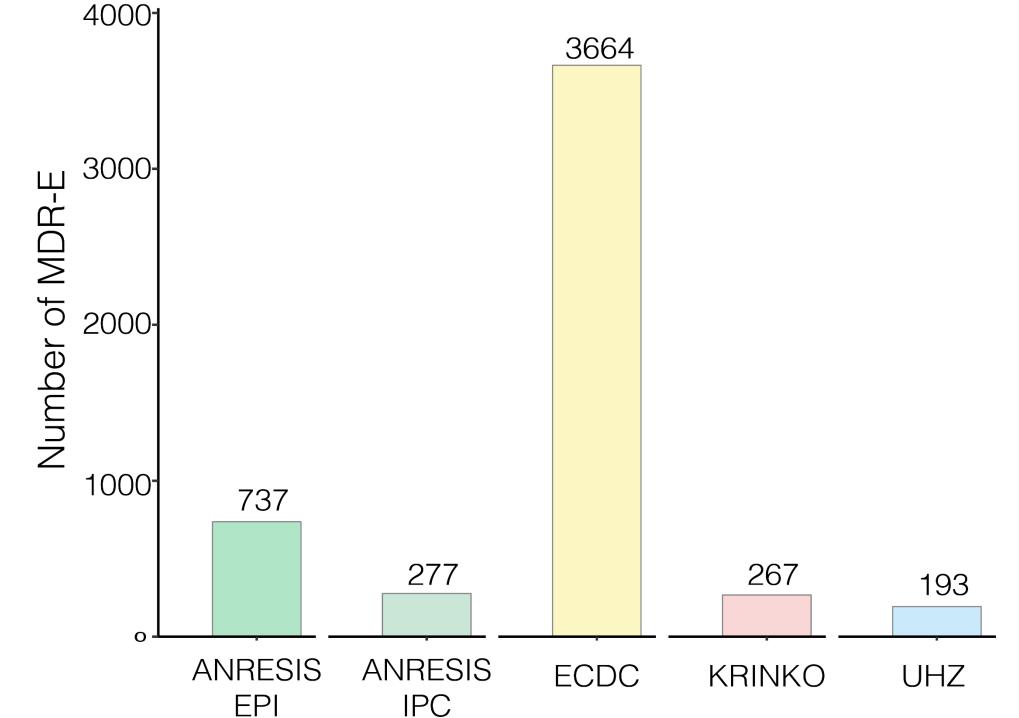

Using qualitative susceptibility data (S,I,R) from invasive isolates from 2019-2020 from the ANRESIS database, we analyzed test algorithms used by Swiss laboratories and cross-resistance within antibiotic groups to determine two different MDR-E definitions depending on the intended use, a broader one for epidemiological surveillance ("ANRESIS-EPI") and a more restrictive one for infection control ("ANRESIS-IPC"). Using these algorithms, the rates of invasive MDR-E identified in our national dataset were compared with international and national definitions.

Table 1 Different MDR definition criteria and the corresponding antibiotic panels per antibiotic group for Enterobacterales are listed. The ECDC¹ definition contains 17 antibiotic categories, of which only the five categories corresponding to the other definitions are listed in the table.

Antibiotic category	ANRESIS-EPI	ANRESIS-IPC	ECDC	KRINKO	UHZ
Aminoglycosides	At least 1 of: amikacin, gentamicin, tobramycin	Amikacin and gentamicin	Gentamicin or tobramycin or amikacin or netilmicin		At least 2 of: amikacin, gentamicin, tobramycin
Antipseudomonal penicillins + BLI	Piperacillin- tazobactam	Piperacillin- tazobactam	Ticarcillin-clavula- nic acid or piperacillin-tazob- actam	Piperacillin- tazobactam	Piperacillin- tazobactam
Carbapenems	At least 1 of: ertapenem, imipenem, meropenem	Imipenem and/or meropenem	Ertapenem or imipenem or meropenem or doripenem	Imipenem and/or meropenem	At least 2 of: ertapenem, imipenem, meropenem
Fluoroquinolones	Ciprofloxacin and/ or levofloxacin	Ciprofloxacin	Ciprofloxacin	Ciprofloxacin	Ciprofloxacin and levofloxacin
3rd and 4th genera- tion cephalosporins		Cefepime and ceftazidime	Cefotaxime or ceftriaxone or ceftazidime or cefepime	Cefotaxime and/or ceftadzidime	Ceftriaxone and ceftazidime and cefepime
MDR definiton criteria	MDR-E: resistant to at least 3 categories out of 5 categories	MDR-E resistant to at least 3 categories out of 5 categories	MDR-E resistant to at least 3 categories out of 17 categories	MDR-E: resistant to at least 3 categories out of 4 categories	MDR-E resistant to at least 3 categories out of 5 categories

Results


The highest MDR-E rates were found using the "ECDC-MDR" definition (N=3664). The number of MDR-E identified by using the ANRESIS-IPC (N=277) definition was comparable to those detected with the KRINKO² (N=267) respectively UHZ³ definition (N=193) (Figure 1). The isolates classified as MDR-E by UHZ, KRINKO and ANRESIS-IPC (N=387) differed markedly. Only 101 of the isolates (26.1%) were commonly classified as MDR-E according to the KRINKO, UHZ and ANRESIS-IPC definitions (Figure 2). However, using the ANRESIS EPI definition, all of these 387 isolates are recognized as MDR-E.

UHZ

Conclusion

The application of different MDR definitions leads not only to considerable variations in the rates of MDR-E, but also in the isolates that are finally classified as MDR-E. Different testing algorithms in Swiss laboratories make a uniform MDR-E definition difficult. The need for different definitions for different purposes and the importance of a commonly defined screening antibiotic panel are highlighted in this study.

Figure 1 Number of Enterobacterales isolates (N=16'879) meeting the respective MDR criteria are displayed.

Figure 2 A) Overlap in the number of Enterobacterales isolates classified as MDR after applying KRINKO, UHZ, and ANRESIS-IPC definitions. B) Overlap in Enterobacterales isolates classified as MDR-E after application of the ECDC, ANRESIS-EPI, and isolates collectively classified as MDR-E with KRINKO, USZ, and ANRESIS-IPC definitions.

Combined MDR-E

(ANRESIS-IPC, KRINKO, UHZ)

References

- 1. Magiorakos, et al. 2012; *Clin Microbiol Infect* 18 (3): 268–81.
- KRINKO (2012). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55(10): 1244-1310.
- 3. Wolfensberger, A., et al. (2019); Antimicrob Resist Infect Control 8: 193

				• • •				• • •
				• • •				• • •
 								• • • • •
				• • •				
	• • • • • • • • • • • • • • • • • • •	• • • • • • • •	- • 🕒 🕒 • - • • •		🕐 🔴 🕘 🖉 🖉 🔸 🔸 👘		a sa 🕒 🕒 🗣 🔸 🔸	
				• • •				
				• • •			- · • • • •	
				• • •	• • • • • • • •		la e 🌰 🕒 🌢 de la 🔸	
				• • •		• • • •	• • • • • • •	
			• • • • • • • • •	• • •		• • • •		
		• • • • •					 • • • • • 	

